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Introduction
Let Y be an N x p data matrix from a  p-dimensional multivariate probability 
distribution               with parameter   .  Let I denote the N x p missing indicator
matrix from a probability distribution                  with parameter    , where

If Y is not fully observed, denote the observed portion of  Y by        and the 
missing portion by        . Then the  joint probability of  Y and I could be written 

Missing completely at random (MCAR):

Missing at random (MAR): 

Not Missing at random (NMAR):
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Introduction (con’t)

Ignorability:  MAR and

Likelihood-based inference with incomplete data 

Under nonignorability:

Under ignorability: 

( , | , ) ( , | , )obs obsL p∝θ ξ Y I Y I θ ξ

( , | , ) ( | )obs obsL p∝θ ξ Y I Y θ

( , | , ) (( , ), | , )

( | , ) (( , ) | )

( | , ) (( , ) | )

( | , ) ( | ).

obs obs mis mis

obs obs mis mis

obs obs mis mis

obs obs

p p d

p p d

p p d

p p

=

=

=

=

∫
∫

∫

Y I θ ξ Y Y I θ ξ Y

I Y ξ Y Y θ Y

I Y ξ Y Y θ Y

I Y ξ Y θ

( , ) ( ) ( )p p p=θ ξ θ ξ



5

Introduction (con’t) 
An Example

508171707MAR
6100101Improved

447835202Worsening
17162561410Incomplete
837975188661Complete
%n%n%n

Completion 
Status

Total
(N=95)

Placebo
(N=24)

Treatment
(N=71)

Table 1.2 IMPS (Inpatient Multidimensional Psychiatry Score) data summary
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Introduction (con’t)
IMPS Data

Placebo group Treatment group
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Introduction (con’t) 
MDT Method

Data matrix: missing occur at the upper end of the distribution 
and only at the last observed time point T.

The T - 1 dimensional vectors                    are independent identically distributed 
multivariate variables. 
The T dimensional vectors                    are independent identically distributed 
multivariate variables, where the distribution of the Tth observations on the n
individuals are considered to be truncated.

Ramakrishnan, Wang, 2005, Analysis of Data from Clinical Trials with Treatment Related Dropouts, Communication in Statistics
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At time t, let the observation                         represent a sample from a 
population with some specified pdf. 

: Number of cases MDT at last time point.
:  Mean and variance of        conditioning on previous T-1

observations.
M : Threshold beyond which individuals drop out. 

: A function representing the mean response of individuals at time    
t, where     is an unknown, vector-valued parameter. 
For example,                                        

where X and Z are known design matrix,     is a fixed parameter 
vector and     represents the random effects

, 1,2,...,ity i n=

~ ( ).Nγ 0,G

Introduction (con’t) 
MDT Method

Ramakrishnan, Wang, 2005, Analysis of Data from Clinical Trials with Treatment Related Dropouts, Communication in Statistics
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The likelihood function under truncated normal distribution:

Introduction (con’t) 
MDT Likelihood

Ramakrishnan, Wang, 2005, Analysis of Data from Clinical Trials with Treatment Related Dropouts, Communication in Statistics
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An EM algorithm is used to simplify the maximum likelihood estimation 
of the parameters. 

Observed data are incomplete data.
MDT and observed data form complete data.
In the E-step, MDT are estimated from conditional truncated normal 
distribution.
In the M-step, repeated measure method is applied to the complete data 
(PROC MIXED).
Iterate between E-step and M-step until convergence.

The initial values for the mean and variance-covariance parameters could 
be obtained from a repeated measures model with missing as MAR.
Initial estimate for M is given by the truncated mean and variance at time 
T: 

Introduction (con’t) 
MDT Estimation

Ramakrishnan, Wang, 2005, Analysis of Data from Clinical Trials with Treatment Related Dropouts, Communication in Statistics
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This procedure could be extended for the case where the data MDT
starts occurring at any time point t prior to T.

The application of this procedure to the situation where the dropouts 
occur in the opposite end of the distribution is straightforward. 

Similarly, the extension of this procedure to the situation where the 
MDT occurs on both sides of the distribution are also possible. 

Introduction (con’t) 
MDT Estimation (2)

Ramakrishnan, Wang, 2005, Analysis of Data from Clinical Trials with Treatment Related Dropouts, Communication in Statistics
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Introduction (con’t)
Other Nonignorable Missing Methods

Under the assumption that the subjects are modeled as independent, that is,

Selection model

Pattern-mixture model

The main difference between MDT method and the selection model is that the 
conditional distributions of                        don’t depend on Ii in the selection model.  

The MDT and the pattern-mixture model seem identical. However, there exists a 
fundamental difference in modeling the conditional distribution .  
Pattern-mixture, in general, models the distribution for both           and            using 
the same family of distribution.  In MDT case, the conditional distributions      given    

are allowed to come from a different family of distribution.   
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Introduction (con’t)
Topics Addressed in This Talk

Implementation of EM algorithm for MDT 
method
Comparisons using simulation
MDT method in conjunction with Multiple 
imputation method (MI)
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Topics Addressed in This Talk

Implementation of EM algorithm for MDT 
method
Comparisons using simulation
MDT method in conjunction with Multiple 
imputation method (MI)
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Implementation of EM algorithm for MDT method
Flowchart of MDT Method

Data with 
observations MDT 
and MAR

Obtain initial values for means, covariance 
parameters from repeated measures model.  
Determine truncation threshold.

E - step
Estimate observations MDT in placebo 
group at each time point sequentially.

E -step
Estimate observations MDT in treatment 
group at each time point sequentially.

M-step
Update the parameters from repeated 
measures model using complete data. 

Is sum of difference of 
parameters between the 
iterations < tolerance

Run repeated measures model to the 
complete data to estimate model 

parameters and to test hypothesis.

Yes

No
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Topics Addressed in This Talk

Implementation of EM algorithm for MDT 
method
Comparisons using simulation
MDT method in conjunction with Multiple 
imputation method (MI)
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Simulation Study for MDT Method
Purpose: To compare other relevant methods

Data were generated from a multivariate normal distribution with
four time points and MDT were created using a threshold M based 
on the dropout rate. 
Simulation characteristics

Linear and quadratic response functions with AR(1) error structure.
Missing data mechanisms:  MDT and MAR.
AR(1) correlation: 0.2, 0.4 and 0.8 (with same variance of 2). 
Dropout rate: one missing – 5%, 10% and 20% at time 4.

two missing – 3%, 7% and 10% at time 3 with 5%, 
10% and 20% at time 4 respectively.

Sample size: n = 50, 100, 200. 
Simulation number: SN=100. 
Other imputation methods: LOCF , REG and MIXED.
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Simulation Study for MDT Method (con’t) 
Other Relevant Methods

Last observation carried forward method (LOCF)
Assigns the person’s last known observation to the 
missing value. 

Individual regression prediction method (REG) 
Extrapolates the missing observations based on a 
regression fit between the outcome variable and time 
for each subject with missing value. 

Repeated measures mixed model method (MIXED)
Treats missing value as MAR.
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Simulation Study for MDT Method (con’t)

0.2ρ =

0.4ρ =

0.8ρ =

2.784(0.083)2.706(0.085)2.657(0.091)2.787(0.131)2.706(0.131)2.660(0.139)2.788(0.192)2.704(0.188)2.659(0.195)MIXED 

2.561(0.111)2.579(0.100)2.590(0.098)2.570(0.176)2.583(0.164)2.592(0.154)2.573(0.218)2.584(0.206)2.592(0.199)REG 

2.915(0.073)2.775(0.079)2.688(0.090)2.916(0.118)2.772(0.121)2.690(0.137)2.918(0.175)2.771(0.180)2.692(0.193)LOCF 

8.850(1.403)7.160(0.678)5.290(0.715)9.310(1.152)6.700(0.893)4.900(1.159)8.850(1.403)6.290(1.066)4.440(1.647)# of itera

2.570(0.098)2.584(0.096)2.593(0.094)2.571(0.150)2.585(0.148)2.595(0.146)2.570(0.213)2.582(0.205)2.592(0.201)MDT

3.022(0.076)2.829(0.078)2.728(0.079)1.828(0.133)2.836(0.120)2.732(0.119)3.042(0.176)2.846(0.182)2.741(0.178)MIXED

2.684(0.130)2.654(0.108)2.638(0.096)2.295(0.275)2.665(0.166)2.643(0.145)2.710(0.244)2.666(0.219)2.648(0.194)REG

3.076(0.073)2.861(0.074)2.745(0.076)1.833(0.135)2.869(0.113)2.749(0.115)3.096(0.155)2.879(0.167)2.760(0.169)LOCF

8.410(1.450)6.380(0.722)4.800(0.696)8.500(1.000)5.980(1.034)4.450(0.914)8.410(1.450)5.770(1.413)4.120(1.647)# of itera

2.695(0.086)2.652(0.085)2.630(0.086)1.868(0.127)2.656(0.128)2.634(0.128)2.708(0.195)2.663(0.192)2.639(0.191)MDT

3.078(0.085)2.861(0.081)2.745(0.083)3.084(0.129)2.871(0.123)2.752(0.124)3.102(0.191)2.881(0.181)2.760(0.181)MIXED

2.822(0.144)2.747(0.110)2.686(0.100)2.828(0.206)2.758(0.162)2.692(0.148)2.846(0.285)2.764(0.218)2.695(0.200)REG

3.1540.086)2.915(0.080)2.773(0.083)3.161(0.125)2.928(0.119)2.781(0.121)3.178(0.185)2.938(0.170)2.790(0.171)LOCF

8.190(1.426)6.070(0.624)4.570(0.700)8.500(1.000)5.770(0.839)4.360(0.927)8.190(1.426)5.570(1.289)4.030(1.359)# of itera

2.731(0.089)2.673(0.087)2.642(0.087)2.738(0.133)2.679(0.128)2.647(0.128)2.747(0.197)2.685(0.189)2.652(0.188)MDT

Method

20%10%5%20%10%5%20%10%5%Missing

n = 200n = 100n = 50

Table B.1 Mean (             ) estimates (s.e) from different methods for linear response &    
MDT at last time point

4 2.6μ =

0.2ρ =

0.4ρ =

0.8ρ =
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Simulation Study for MDT Method (con’t)

4μFigure B.1 Mean (     ) estimates from different methods for linear response, MDT at last time point 
and AR(1)=0.2, 0.4 and 0.8.

B. n =100

Bias2 Bias2

Bias2

05=5%missing
10=10%missing
20=20%missing

A. n =50

C. n =200

M
SE

M
SE

M
SE

4μ
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Simulation Study for MDT Method (con’t)
Simulation Results Summary

When missing proportion is small all the methods perform 
reasonably well. 
Although regression method estimates the means accurately for 
linear response function, it typically over estimates the variance 
and correlation especially when the correlation is low.  
The LOCF and regression are both sensitive to the forms of 
response function.  
when the missing are not MAR, the bias of the estimates from 
MIXED method is large for most cases. 
When the data are missing due to truncation, MDT method 
performs best for all the parameters regardless of missing 
proportion and the forms of response function. 
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Simulation Study for MDT Method (con’t)
Simulation Conclusion

In practice, the choice of the method for dealing with the 
missing data is important especially when large proportion 
is missing.  The MDT method should be used if the form 
of the model is unknown and there is reason to believe the 
assumption of truncated normal distribution is appropriate. 
When the missing mechanism is unknown, the application 
of MDT method is not recommended. 
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Topics Addressed in This Talk

Implementation of EM algorithm for MDT 
method
Comparisons using simulation
MDT method in conjunction with Multiple 
imputation method (MI)
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MDT Method in conjunction with Multiple 
Imputation (MI)
First developed by Rubin (1977) but became more popular in the past 
10 years as the computer power grew. 
The idea is to replace each missing value with two or more accepted 
values so that the uncertainty about the right value to impute could 
incorporated into the analysis. 
The procedure is to,

Create m (m ≥ 2) complete data sets by replacing each missing value with 
m repeated random draws from a predictive distribution of the missing 
data
Analyze each of the m complete data sets using standard complete data 
procedures. 
Combine m sets of the point and variance estimates by ‘Rubin’s rule’ to 
make valid inferences.

Majority of MI procedures involve the use of ignorable missing 
models. However, MI can also be used with nonignorable missing data. 
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MDT Method in conjunction with Multiple 
Imputation (con’t) 
Flowchart of MDT method in conjunction with MI

θ̂
ˆ( , )p bootN θ V

Data with MDT 
and MAR

Apply MDT method to 
original data to get Obtain bootstrap samples and

estimate         using MDT method
and define the posterior distribution
of      as

For the dth imputation draw
from 

Draw dth imputation of           from
Predictive distribution 
to get complete data. 

Conduct repeated measures mixed 
model analysis for each complete 
dataset. (PROC MIXED in SAS)

Combine the m sets of results to quantify 
the uncertainty due to imputation.  
(PROC MIANALYZE in SAS)

bootV

ˆ( , )p bootN θ V

θ̂

θ( )d
misY

( )( | , )d
mis obsf Y Y θ%

( )dθ%

θ̂
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Application to IMPS Data

MDT Method in conjunction with Multiple
Imputation (con’t)

Table 1.2 IMPS data summary

508171707MAR
6100101Improved

447835202Worsening
17162561410Incomplete
837975188661Complete
%n%n%n

Completion 
Status

Total
(N=95)

Placebo
(N=24)

Treatment
(N=71)
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Table 5.1 Variance Information using MDT Method in conjunction with MI

MDT Method in conjunction with Multiple
Imputation (con’t)

0.05300.0554246.240.0310.0290.00148group*stime
0.05420.0567245.120.0230.0210.00111stime
0.00030.0003280.950.0940.0940.00002group
0.00030.0003280.930.0730.0730.00002Intercept

TotalWithinBetween

Fraction
Missing

Information

Relative
Increase

in VarianceDF

Variance

Parameter

Stime: square root transformation of TIME variable

Analysis Results (1)
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Table 5.2 Parameter Estimates using MDT Method in conjunction with MI

MDT Method in conjunction with Multiple 
Imputation (con’t) 

0.0655-1.85-0.284-0.419246.240.176-0.325group* stime

0.0023-3.08-0.385-0.513245.120.151-0.465stime

0.90450.120.0430.030280.950.3070.037group

<.000119.235.2035.188280.930.2705.194Intercept

Pr > |t|t for
H0:θ=0

Maximu
mMinimumDFStd ErrorEstimateParameter

Stime: square root transformation of TIME variable

Analysis Results (1)
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Table 5.4 Multiple Imputation parameter Estimates using PROC MI

MDT Method in conjunction with Multiple
Imputation (con’t)
Comparison with Multiple Imputation Assuming MAR

0.2972-1.04-0.130-0.199249.890.152-0.159group*stime

<.0001-4.47-0.564-0.611258.490.132-0.589Stime

0.96050.050.0270.007280.780.3160.016group

<.000118.565.2655.245280.710.2835.252Intercept
Pr > |t|

t for
H0:θ=0MaximumMinimumDFStd ErrorEstimateParameter

Stime: square root transformation of TIME variable
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Summary and Future Work
Extend MDT method to multivariate outcomes

Subject drops out of the study due to the subject exceeding threshold 
Due to all the outcomes exceeding the thresholds
Due to some of the outcomes exceeding the thresholds

Allow for the threshold to be random
Thresholds may vary among subjects
Assume subject-specific threshold is a random variable from a uniform 
distribution based on clinical knowledge
Define the threshold depending on the subject’s previous observations

Estimate missing values from the same subject simultaneously
When the MDT occurs at multiple time points
Estimate the MDTs simultaneously using multivariate truncated normal 
distribution.
The estimation involves multivariate normal CDFs.
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Questions?


